Review of topics in concurrency

What is the smallest value of counter, among those listed, after the
threads terminate?

int counter = 0:

thread t thread u
int cnt; int cnt;
for (int i = 0; i < 5; i++) {| for (int i = 0; i < 5; i++) { 5
cnt = counter; cnt = counter; 6
counter = cnt + 1; counter = cnt + 1; 7
} } 8

1. 1
2. 5
3. 6
4. 10

29/42

What is the smallest value of counter, among those listed, after the
threads terminate?

int counter = 0:

thread t thread u
int cnt; int cnt;
for (int i = 0; i < 5; i++) {| for (int i = 0; i < 5; i++) { 5
cnt = counter; cnt = counter; 6
counter = cnt + 1; counter = cnt + 1; 7
} } 8

1. 1
2. 5
3. 6
4. 10

29/42

The final value of counter is 5 when both threads read counter
one thread proceeds and increments it to 5, and the other thread
overwrites the same values up to 5.

But there are schedules where there is an even more destructive
interference between the two threads, so that the final value of

counter can be as low as 2!

t’S LOCAL u’S LOCAL SHARED
1pct: 2cnty: L pcy: 6centy: L|counter: O
2pct: 2cnty: L|pcy: 7cnty: O |counter: O
3pct: 3cntt: O |pcy: 7cnty: O |counter: O
4pct: 3enty: O |pcy: 6enty: O |counter: 1
5pct: 3cnty: 0 |pcy: 7cnty: 1 |counter: 1
6pct: 3centy: O |pcy: 6centy: 1 [counter: 2
7pct: 3cntt: 0 |pcy: 7cnty: 2 |counter: 2
8pct: 3enty: 0 [pcy: 6enty: 2 |counter: 3
9pct: cntt: O |pcy: 7cnty: 3 |counter: 3

10pct: 3cnty: O |pcy: 6centy: 3 |counter: 4

11 pct: 2cnty: O [pcy: 6 cnty: 3 |counter: 1

12pct: 2cnty: O [pcy: 7 centy: 1 [counter: 1

13pct: 3centy: 1 [pcy: 7 centy: 1 |counter: 1

14pcy: 2cnty: 1 [pcy: 7centy: 1 [counter: 2

15pct: 3centy: 2 [pcy: 7 centy: 1 |counter: 2

16 pct: 2cnty: 2 [pcy: 7 cnty: 1 [counter: 3

17 pct: 3centy: 3 [pCy: 7 cnty: 1 [counter: 3

18 pct: 2 cnty: 3 [pcy: 7 centy: 1 [counter: 4

19pct: 3centy: 4 [pcy: 7 cnty: 1 [counter: 4

20 done pCy: 7 cnty: 1 [counter: 5

21 done done counter: 2

30/42

What is the value of n after 8 concurrent threads terminate?

int n = 0; Semaphore s = new Semaphore(l); // capacity 1

thread t

1. Between 1 and 8
2. Between 4 and 8
3. Always 4
4. Always 8

31/42

What is the value of n after 8 concurrent threads terminate?

int n = 0; Semaphore s = new Semaphore(l); // capacity 1

thread t

1. Between 1 and 8
2. Between 4 and 8
3. Always 4
4. Always 8

31/42

What is the value of n after 8 concurrent threads terminate?

int n = 0; Semaphore s = new Semaphore(2); // capacity 2

thread t

1. Between 1 and 8
2. Between 4 and 8
3. Always 4
4. Always 8

32/42

What is the value of n after 8 concurrent threads terminate?

int n = 0; Semaphore s = new Semaphore(2); // capacity 2

thread t
int x;
1 S.down();
2 X = n;
3 nh=X+1;

4 s.up();

1. Between 1 and 8
2. Between 4 and 8
3. Always 4
4. Always 8

The value 1 occurs if one thread t reads 0 initially, and then waits
Inside its critical section, while the other threads go through their
critical section in mutual exclusion. Then, t finishes by writing 1, thus
overwriting the increments of all other threads.

32/42

What do threads continuously calling x() and y() print?

monitor class CountPrint {

private Condition isX = new Condition();

private Condition isY = new Condition();

public void x()

{ isX.wait(); System.out.print("X"); isY.signal(); }

public void y()

{ isY.wait(); System.out.print("Y"); isX.signal(); }
}

1. A sequence of alternating X and Y.

2. The first answer, if the monitor uses “signal and wait”.

3. The first answer, if the monitor uses “signal and continue”.
4. The program deadlocks.

33/42

What do threads continuously calling x() and y() print?

monitor class CountPrint {

private Condition isX = new Condition();

private Condition isY = new Condition();

public void x()

{ isX.wait(); System.out.print("X"); isY.signal(); }

public void y()

{ isY.wait(); System.out.print("Y"); isX.signal(); }
}

1. A sequence of alternating X and Y.

2. The first answer, if the monitor uses “signal and wait”.

3. The first answer, if the monitor uses “signal and continue”.
4. The program deadlocks.

33/42

What do threads continuously calling x() and y() print?

monitor class CountPrint {
private Condition isY = new Condition();
public void x()
{ System.out.print("X"); isY.signal(); }
public void y()
{ isY.wait(); System.out.print("Y"); }

}

1. A sequence with at least one X between every pair of .

2. The first answer, if the monitor uses “signal and wait”.

3. The first answer, if the monitor uses “signal and continue”.
4. The program deadlocks.

34/42

What do threads continuously calling x() and y() print?

monitor class CountPrint {
private Condition isY = new Condition();
public void x()
{ System.out.print("X"); isY.signal(); }
public void y()
{ isY.wait(); System.out.print("Y"); }

}

1. A sequence with at least one X between every pair of .

2. The first answer, if the monitor uses “signal and walit”.

3. The first answer, if the monitor uses “signal and continue”.
4. The program deadlocks.

Under “signal and continue”, it is possible that two unblocked calls to
y () getin the entry queue and then execute one after another.

34/42

